The previous recognition examples output class probabilities representing the entire input image. Next we’re going to focus on object detection, and finding where in the frame various objects are located by extracting their bounding boxes. Unlike image classification, object detection networks are capable of detecting many different objects per frame.
The detectNet
object accepts an image as input, and outputs a list of coordinates of the detected bounding boxes along with their classes and confidence values. detectNet
is available to use from Python and C++. See below for various pre-trained detection models available for download. The default model used is a 91-class SSD-Mobilenet-v2 model trained on the MS COCO dataset, which achieves realtime inferencing performance on Jetson with TensorRT.
As examples of using the detectNet
class, we provide sample programs for C++ and Python:
detectnet.cpp
(C++)detectnet.py
(Python)These samples are able to detect objects in images, videos, and camera feeds. For more info about the various types of input/output streams supported, see the Camera Streaming and Multimedia page.
First, let’s try using the detectnet
program to locates objects in static images. In addition to the input/output paths, there are some additional command-line options:
--network
flag which changes the detection model being used (the default is SSD-Mobilenet-v2).--overlay
flag which can be comma-separated combinations of box
, lines
, labels
, conf
, and none
--overlay=box,labels,conf
which displays boxes, labels, and confidence valuesbox
option draws filled bounding boxes, while lines
draws just the unfilled outlines--alpha
value which sets the alpha blending value used during overlay (the default is 120
).--threshold
value which sets the minimum threshold for detection (the default is 0.5
).If you’re using the Docker container, it’s recommended to save the output images to the images/test
mounted directory. These images will then be easily viewable from your host device under jetson-inference/data/images/test
(for more info, see Mounted Data Volumes).
Here are some examples of detecting pedestrians in images with the default SSD-Mobilenet-v2 model:
# C++
$ ./detectnet --network=ssd-mobilenet-v2 images/peds_0.jpg images/test/output.jpg # --network flag is optional
# Python
$ ./detectnet.py --network=ssd-mobilenet-v2 images/peds_0.jpg images/test/output.jpg # --network flag is optional
# C++
$ ./detectnet images/peds_1.jpg images/test/output.jpg
# Python
$ ./detectnet.py images/peds_1.jpg images/test/output.jpg
note: the first time you run each model, TensorRT will take a few minutes to optimize the network.
this optimized network file is then cached to disk, so future runs using the model will load faster.
Below are more detection examples output from the console programs. The 91-class MS COCO dataset that the SSD-based models were trained on include people, vehicles, animals, and assorted types of household objects to detect.
Various images are found under images/
for testing, such as cat_*.jpg
, dog_*.jpg
, horse_*.jpg
, peds_*.jpg
, ect.
If you have multiple images that you’d like to process at one time, you can launch the detectnet
program with the path to a directory that contains images or a wildcard sequence:
# C++
./detectnet "images/peds_*.jpg" images/test/peds_output_%i.jpg
# Python
./detectnet.py "images/peds_*.jpg" images/test/peds_output_%i.jpg
note: when using wildcards, always enclose it in quotes (
"*.jpg"
). Otherwise, the OS will auto-expand the sequence and modify the order of arguments on the command-line, which may result in one of the input images being overwritten by the output.
For more info about loading/saving sequences of images, see the Camera Streaming and Multimedia page.
You can also process videos from disk. For more info about loading/saving videos, see here.
# Download test video
wget https://nvidia.box.com/shared/static/veuuimq6pwvd62p9fresqhrrmfqz0e2f.mp4 -O pedestrians.mp4
# C++
./detectnet pedestrians.mp4 images/test/pedestrians_ssd.mp4
# Python
./detectnet.py pedestrians.mp4 images/test/pedestrians_ssd.mp4
# Download test video
wget https://nvidia.box.com/shared/static/i5i81mkd9wdh4j7wx04th961zks0lfh9.avi -O parking.avi
# C++
./detectnet parking.avi images/test/parking_ssd.avi
# Python
./detectnet.py parking.avi images/test/parking_ssd.avi
Remember that you can use the --threshold
setting to change the detection sensitivity up or down (the default is 0.5).
Below is a table of the pre-trained object detection networks available for download, and the associated --network
argument to detectnet
used for loading the pre-trained models:
Model | CLI argument | NetworkType enum | Object classes |
---|---|---|---|
SSD-Mobilenet-v1 | ssd-mobilenet-v1 |
SSD_MOBILENET_V1 |
91 (COCO classes) |
SSD-Mobilenet-v2 | ssd-mobilenet-v2 |
SSD_MOBILENET_V2 |
91 (COCO classes) |
SSD-Inception-v2 | ssd-inception-v2 |
SSD_INCEPTION_V2 |
91 (COCO classes) |
DetectNet-COCO-Dog | coco-dog |
COCO_DOG |
dogs |
DetectNet-COCO-Bottle | coco-bottle |
COCO_BOTTLE |
bottles |
DetectNet-COCO-Chair | coco-chair |
COCO_CHAIR |
chairs |
DetectNet-COCO-Airplane | coco-airplane |
COCO_AIRPLANE |
airplanes |
ped-100 | pednet |
PEDNET |
pedestrians |
multiped-500 | multiped |
PEDNET_MULTI |
pedestrians, luggage |
facenet-120 | facenet |
FACENET |
faces |
note: to download additional networks, run the Model Downloader tool
$ cd jetson-inference/tools
$ ./download-models.sh
You can specify which model to load by setting the --network
flag on the command line to one of the corresponding CLI arguments from the table above. By default, SSD-Mobilenet-v2 if the optional --network
flag isn’t specified.
For example, if you chose to download SSD-Inception-v2 with the Model Downloader tool, you can use it like so:
# C++
$ ./detectnet --network=ssd-inception-v2 input.jpg output.jpg
# Python
$ ./detectnet.py --network=ssd-inception-v2 input.jpg output.jpg
For reference, below is the source code to detectnet.py
:
import jetson.inference
import jetson.utils
import argparse
import sys
# parse the command line
parser = argparse.ArgumentParser(description="Locate objects in a live camera stream using an object detection DNN.")
parser.add_argument("input_URI", type=str, default="", nargs='?', help="URI of the input stream")
parser.add_argument("output_URI", type=str, default="", nargs='?', help="URI of the output stream")
parser.add_argument("--network", type=str, default="ssd-mobilenet-v2", help="pre-trained model to load (see below for options)")
parser.add_argument("--overlay", type=str, default="box,labels,conf", help="detection overlay flags (e.g. --overlay=box,labels,conf)\nvalid combinations are: 'box', 'labels', 'conf', 'none'")
parser.add_argument("--threshold", type=float, default=0.5, help="minimum detection threshold to use")
try:
opt = parser.parse_known_args()[0]
except:
print("")
parser.print_help()
sys.exit(0)
# load the object detection network
net = jetson.inference.detectNet(opt.network, sys.argv, opt.threshold)
# create video sources & outputs
input = jetson.utils.videoSource(opt.input_URI, argv=sys.argv)
output = jetson.utils.videoOutput(opt.output_URI, argv=sys.argv)
# process frames until the user exits
while True:
# capture the next image
img = input.Capture()
# detect objects in the image (with overlay)
detections = net.Detect(img, overlay=opt.overlay)
# print the detections
print("detected {:d} objects in image".format(len(detections)))
for detection in detections:
print(detection)
# render the image
output.Render(img)
# update the title bar
output.SetStatus("{:s} | Network {:.0f} FPS".format(opt.network, net.GetNetworkFPS()))
# print out performance info
net.PrintProfilerTimes()
# exit on input/output EOS
if not input.IsStreaming() or not output.IsStreaming():
break
Next, we’ll run object detection on a live camera stream.
##
Next | Running the Live Camera Detection Demo
Back | Running the Live Camera Recognition Demo</p>